InterviewSolution
| 1. |
Draw the structure soap, detergent |
|
Answer» Soap is a mixture of sodium salts of various naturally occurring fatty acids. Air bubbles added to a molten soap will decrease the density of the soap and thus it will float on water. If the fatty acid salt has potassium rather than sodium, a softer lather is the result. Soap is produced by a saponification or basic hydrolysis reaction of a fat or oil. Currently, sodium carbonate or sodium hydroxide is used to neutralize the fatty acid and convert it to the salt. General overall hydrolysis reaction: fat + NaOH ---> glycerol + sodium salt of fatty acid Although the reaction is shown as a one step reaction, it is in fact two steps. The net effect as that the ester bonds are broken. The glycerol turns back into an alcohol (addition of the green H's). The fatty acid portion is turned into a salt because of the presence of a basic solution of the NaOH. In the carboxyl group, one oxygen (red) now has a negative charge that attracts the positive sodium ion. Types of Soap:The type of fatty acid and length of the carbon chain determines the unique properties of various soaps. Tallow or animal fats give primarily sodium stearate (18 carbons) a very hard, insoluble soap. Fatty acids with longer chains are even more insoluble. As a matter of fact, zinc stearate is used in talcum powders because it is water repellent. Coconut oil is a source of lauric acid (12 carbons) which can be made into sodium laurate. This soap is very soluble and will lather easily even in sea water. Fatty acids with only 10 or fewer carbons are not used in soaps because they irritate the skin and have objectionable odors. Synthetic detergents have similar molecular structures and properties as soap. Although the cleansing action is similar, the detergents do not react as readily with hard water ions of calcium and magnesium. There are over a thousand synthetic detergents available in the United States. Detergent molecular structures consist of a long hydrocarbon chain and a water soluble ionic group. Most detergents have a negative ionic group and are called anionic detergents. The majority are alky sulfates. Others are "surfactants" (from surface active agents) which are generally known as alkyl benzene sulfonates |
|