1.

`(dy)/(dx)` ज्ञात कीजिए| `log(logx)`

Answer» माना `y=log(logx)`
`rArr" "(dy)/(dx)=(d)/(dx)log(logx)`
`" "=(1)/(logx)(d)/(dx)(logx)`
`" "=(1)/(xlogx)=(x logx)^(-1)`
`rArr" "(d^(2)y)/(dx^(2))=(d)/(dx)(x log x)^(-1)`
`" "=-1.(xlogx)^(-2)(d)/(dx)(xlogx)`
`" "-([x.(1)/(x)+logx+logx(d)/(dx)x])/((x log x)^(2))`
`" =-([x.(1)/(x)+logx])/((x log x)^(2))`
`" "=-((1+logx))/((xlogx)^(2))`


Discussion

No Comment Found