InterviewSolution
Saved Bookmarks
| 1. |
`(dy)/(dx)` ज्ञात कीजिए| `x=a(cost+logtan.(t)/(2)),y=a sin t` |
|
Answer» `x=a(cost+log tan(t)/(2))` और `y=a sin t` `rArr" "(dx)/(dt)=a[-sin t+(sec^(2).(t)/(2))/(2 tan.(t)/(2))]" और "(dy)/(dx)=a cos t` `=a[-sint+(1)/(2 sin.(t)/(2)cos.(t)/(2))]` `=a(-sin t+(1)/(sint))` `=a((1-sin^(2)t)/(sint))=a(cos^(2)t)/(sint)` अब `(dy)/(dx)=(dy//dt)/(dx//dt)=(a cos t)/((a cos^(2)t)/(sint))=tant` |
|