1.

`(dy)/(dx)` ज्ञात कीजिए| `x=a(cost+logtan.(t)/(2)),y=a sin t`

Answer» `x=a(cost+log tan(t)/(2))` और `y=a sin t`
`rArr" "(dx)/(dt)=a[-sin t+(sec^(2).(t)/(2))/(2 tan.(t)/(2))]" और "(dy)/(dx)=a cos t`
`=a[-sint+(1)/(2 sin.(t)/(2)cos.(t)/(2))]`
`=a(-sin t+(1)/(sint))`
`=a((1-sin^(2)t)/(sint))=a(cos^(2)t)/(sint)`
अब `(dy)/(dx)=(dy//dt)/(dx//dt)=(a cos t)/((a cos^(2)t)/(sint))=tant`


Discussion

No Comment Found