1.

`(dy)/(dx)+(secx)y=tanx(0lexlt(pi)/(2))`

Answer» `(dy)/(dx)+y sec x = tan x`
यहाँ, P = sec x और Q = tan x
`therefore I.F. = e^(intPdx)=e^(intsec x)`
`=e^(log(secx+tanx))=secx+tanx`
और व्यापक हल
`y(secx+tanx)=inttanx(secx+tanx)dx+c = int(secxtanx+sec^(2)x-1)dx+c`
`implies y(secx+tanx)=secx+tanx-1+c`


Discussion

No Comment Found