

InterviewSolution
Saved Bookmarks
1. |
`(dy)/(dx)+(secx)y=tanx(0lexlt(pi)/(2))` |
Answer» `(dy)/(dx)+y sec x = tan x` यहाँ, P = sec x और Q = tan x `therefore I.F. = e^(intPdx)=e^(intsec x)` `=e^(log(secx+tanx))=secx+tanx` और व्यापक हल `y(secx+tanx)=inttanx(secx+tanx)dx+c = int(secxtanx+sec^(2)x-1)dx+c` `implies y(secx+tanx)=secx+tanx-1+c` |
|