InterviewSolution
Saved Bookmarks
| 1. |
`(dy)/(dx)+xsin2y=x^(3)cos^(2)y` |
|
Answer» Correct Answer - `e^(x^(2))tany=1/2e^(x^(2))(x^(2)-1)+c` The given equation can be expressed as `sec^(2)y(dy)/(dx)+2xtany=x^(3)` Put `tany=z`, so that `sec^(2)y(dy)/(dx)=(dz)/(dx)` Given equation transforms to `(dz)/(dx) +2xz+x^(3)`, which is linear in z. `I.F. = e^(2intxdx)=e^(x^(2))` Therefore, solution is given by `ze^(x^(2))=intx^(3)e^(x^(2))dx+c` or `tanye^(x^(2))=1/2e^(x^(2))(x^(2)-1)+c` (substitute for `x^(2)=t` and then integrate by parts) |
|