1.

`e^(x)tanydx+(1-e^(x))sec^(2)ydy=0`

Answer» `e^(x)tanydx+(1-e^(x))sec^(2)ydy=0`
`implies e^(x)tan y dx=-(1-e^(x))sec^(2)y dy`
`implies (e^(x))/((e^(x)-1))dx=(sec^(2)y)/(tan y)dy`
`implies int(e^(x))/((e^(x)-1))dx=int(sec^(2)y)/(tany)dy`
माना `e^(x)-1=t implies e^(x)dx=dt`
माना `tan y = v implies sec^(2)y dy = dv`
`therefore int (1)/(t)dt = int(1)/(v) dv`
`implies log|t|=log|v|-log|C|`
`implies log|e^(x)-1|=log|tany|-log|C|`
`log|C(e^(x)-1)|=log|tany|`
`implies C^(e^(x)-1)=tan y`
जोकि अभीष्ट व्यापक हल है।


Discussion

No Comment Found