InterviewSolution
Saved Bookmarks
| 1. |
एक आयताकार लूप जिसकी भुजाएँ 8 सेमी 2 सेमी हैं, एक स्थान पर थोड़ा कटा हुआ है । यह लूप अपने तल के अभिलंबवत 0.3 टेस्ला के एकसमान चुम्बकीय क्षेत्र से बाहर की ओर निकल रहा है । यदि लूप के बाहर निकलने का वेग `1 "सेमी"//"सेकण्ड"` है, तो कटे भाग सिरोंपर उत्पन्न विधुत वाहक बल कितना होगा, जब लूप की गति अभिलंबवत हो (i) लूप की लम्बी भुजा के (ii) लूप की छोटी भुजा के ? प्रत्येक स्थिति में उत्पन्न प्रेरित वोल्टता कितने समय तक टिकेगी ? |
|
Answer» दिया है , `l = 8` सेमी `= 8 xx 10^(-2)` मीटर `b = 2` सेमी `= 2 xx 10^(-2)` मीटर `v = 1 "सेमी"//"सेकण्ड" = 1 xx 10^(-2) "मीटर"//"सेकण्ड"` `B = 0.3 "टेस्ला"` (i) जब वेग लूप की लम्बी भुजा के लम्ब्वत है, जब प्रेरित विभवान्तर `V = Bvl = 0.3 xx 10^(-2) xx 8 xx 10^(-2)` `= 24 xx 10^(-5) "वोल्ट"` उत्पन्न विभवान्तर तब तक रहेगा जब तक की लूप चुम्बकीय क्षेत्र में रहता है । प्रेरित विभवान्तर का समय `= "दूरी"/"वेग" = b/v` `= (2 xx 10^(-2))/(1 xx 10^(-2)) = 2 "सेकण्ड"`। (ii) जब वेग लूप की छोटी भुजा के लम्ब्वत है, जब प्रेरित विभवान्तर `V = Bvb = 0.3 xx 10^(-2) xx 2 xx 10^(-2)` `= 6 xx 10^(-5)"वोल्ट"` । प्रेरित विभवान्तर का समय `= l/v = (8 xx 10^(-2))/(1 xx 10^(-2)) = 8` सेकण्ड । |
|