Saved Bookmarks
| 1. |
EVALUATE............. |
|
Answer» Answer: ∫11+x4 dx =∫1x21+x4x2 dx =∫1x2x2+1x2 dx =12∫2x2x2+1x2 dx =12∫(1+1x2)−(1−1x2)x2+1x2 dx =12∫(1+1x2)dxx2+1x2−12∫(1−1x2)dxx2+1x2 =12∫(1+1x2)dxx2+1x2−2+2−12∫(1−1x2)dxx2+1x2+2−2 =12∫d(x−1x)(x−1x)2+2−12∫d(x+1x)(x+1x)2−2 =12∫d(x−1x)(x−1x)2+(2√)2−12∫d(x+1x)(x+1x)2−(2√)2 ★ Now, using STANDARD formula: ∫dxx2+a2=1atan−1(XA) & ∫dxx2−a2=12aln∣∣x−ax+a∣∣ =12⋅12√tan−1(x−1x2√)−12⋅122√ln∣∣∣x+1x−2√x+1x+2√∣∣∣+C =122√tan−1(x2−1x2√)−142√ln∣∣x2−x2√+1x2+x2√+1∣∣+C |
|