InterviewSolution
Saved Bookmarks
| 1. |
Evaluate \(\begin{vmatrix}sin \,y&0&sin \,y\\cos \,y&1&cos \,x\\sin \,y&1&sin \,y \end{vmatrix}\)(a) sin y (cos y-cos x)(b) sin x (cos y-cos x)(c) sin x (cos x-cos y)(d) sin y (cos 2y-cos x)The question was posed to me in semester exam.Question is from Determinant in portion Determinants of Mathematics – Class 12 |
|
Answer» CORRECT choice is (a) sin y (COS y-cos X) For explanation: Δ=\(\begin{vmatrix}sin \,y&0&sin \,y\\cos \,y&1&cos \,x\\sin \,y&1&sin \,y \end{vmatrix}\) Δ=sin y \(\begin{vmatrix}1&cos \,x\\1&sin \,y \end{vmatrix}\)-0\(\begin{vmatrix}cos \,y&cos \,x \\sin \,y&sin \,y \end{vmatrix}\)+sin y \(\begin{vmatrix}cos \,y&1\\sin \,y&1\end{vmatrix}\) Δ=sin y (sin y-cos x)-0+sin y (cos y-sin y) Δ=sin^2y-sin ycos x+sin ycos y-sin^2y=sin y (cos y-cos x) |
|