InterviewSolution
Saved Bookmarks
| 1. |
Evaluate: `cos(sin^(-1)3/5+sin^(-1)5/(13))` |
|
Answer» Let `sin^(-1)=3/5=A` and `sin^(-1)5/13=B`. Then, `A,B in [-pi/2,pi/2] rArr cosA gt 0` and `cosB gt 0`. `therefore sinA=3/5` and `sinB=5/13` `rArr cosA=sqrt(1-sin^(2)A)=sqrt(1-9/25)=sqrt(16/25)=4/5` and `cosB=sqrt(1-sin^(2)B) = sqrt(1-25/169)=sqrt(144/169)=12/13`. `therefore cos(sin^(-1)3/5+sin^(-1)5/13)=cos(A+B)=cosAcosB-sinAsinB` `=(4/5 xx 12/13) -(3/5 xx 5/13)` `=(48/65 -15/65) = 33/65`. |
|