

InterviewSolution
1. |
Evaluate:\( \:\int \:\left[\left(x^3-yz\right)dydz-2x^2ydzdx+zdxdy\right]\) over the surface of a cube bounded by the coordinates planes and the plane x = y = z = a. |
Answer» We are finding double integration over the surface of a cube bounded by coordinate planes x = y = z = a and the plane x = y = z = a ∫∫[(x3 - yz) dy dz - 2x2y dz dx + zdxdy] surfaces are s1 : x = 0, s2 : x = a, s3: y = 0, s4 : y = a, and s5 : z = 0, s6 : z = a \(\therefore\) ∫∫[(x3 - yz) dy dz - 2x2y dz dx + z dx dy] = (∫∫s1 + ∫∫s2 + ∫∫s3 + ∫∫s4 + ∫∫s5 + ∫∫s6) [(x3 - yz) dy dz - 2x2ydz dx + zdx dy] = \(\int\limits_{y=0}^{y=a}\int\limits_{z=0}^{z=a}(-yz)dydz\) + \(\int\limits_{y=0}^{y=a}\int\limits_{z=0}^{z=a}(a^3-yz)dydz\) + \(\int\limits_{z=0}^{z=a}\int\limits_{x=0}^{x=a}(-2x^2\times0)dzdx\) + \(\int\limits_{z=0}^{z=a}\int\limits_{x=0}^{x=a}(-2x^2a)dzdx\)+ \(\int\limits_{x=0}^{x=a}\int\limits_{y=0}^{y=a}0dxdy\) + \(\int\limits_{x=0}^{x=a}\int\limits_{y=0}^{y=a}adxdy\) = \(\int\limits_{y=0}^{y=a}-[\frac{yz^2}2]^{z=a}_{z=0}dy\) + \(\int\limits_{y=0}^{y=a}-[a^3z-\frac{yz^2}2]^{z=a}_{z=0}dy\) + 0 - 2a \(\int\limits_{z=0}^{z=a}-[\frac{x^3}3]^{x=a}_{x=0}dz\) + 0 + a\(\int\limits_{x=0}^{x=a}[y]^{y=a}_{y=0}dx\) = \(-\frac{a^2}2\int\limits_0^aydy+\int\limits_0^a(a^4-\frac{a^2y}2)dy\) - \(\frac{2a^4}3\int\limits_0^adz+a^2\int\limits_0^adx\) = \(-\frac{a^2}2[\frac{y^2}2]_0^a+[a^4y - \frac{a^2y^2}4]_0^4\) - \(\frac{2a^4}3[z]_0^a+a^2[x]_0^a\) = -\(\frac{a^4}4+a^5-\frac{a^4}4-\frac{2a^5}3+a^3\) = \(\frac13a^5-\frac12a^4+a^3\) |
|