 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Evaluate `int(x^2+1)/((x^2+2)(2x^2+1))dx` | 
| Answer» `I=int(x^(2))/((x^(2)+2)(2x^(2)+1))dx` Let`" "(x^(2))/((x^(2)+2)(2x^(2)+1))=(A)/(x^(2)+2)+(B)/(2x^(2)+1)` Put `x^(2)=y` `(y)/((y+2)(2y+1))+(A)/(y+2)+(B)/(2y+1)` `y=A(2y+1)+B(y+2)` Put `y+2 =0 rArr y=-2` `-2 = a(-3)+0` `therefore" "A=(2)/(3)` Put `2y+1=0 rArr y=-(1)/(2)` `-(1)/(2)=0+B(-(1)/(2)+2)` `-(1)/(2)=B((3)/(2))` `therefore" "B=-(1)/(3)` `therefore" "(y)/((y+2)(2y+1))=(2)/(3(y+2))-(1)/(3(2y+1))` Then `(x^(2))/((x^(2)+2)(2x^(2)+1))=(2)/(3(x^(2)+2))-(1)/(3(2x^(2)+1))` `int(x^(2))/((x^(2)+2)(2x^(2)+1))dx=int(2)/(3(x^(2)+2))dx-int(dx)/(3(2x^(2)+1))` `=(2)/(3)int(dx)/(x^(2)+(sqrt2)^(2))-(1)/(3)int(dx)/(2x^(2)+1)` `=(2)/(3)xx(1)/(sqrt2)tan^(-1).(x)/(sqrt2)-(1)/(3xx2)int(dx)/(x^(2)+((1)/(sqrt2))^(2))` `=(sqrt2)/(3)tan^(-1).(x)/(sqrt2)-(1)/(6)xx(1)/(1//sqrt2) tan^(-1).(x)/(1//sqrt2)+c` `=(sqrt2)/(3)tan^(-1).(x)/(3sqrt2)tan^(-1)sqrt2 x+c` | |