 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Obtion the differential equation by elininating arbitrary constants A, B from the equation - `y=A cos (logx)+B sin (logx)` | 
| Answer» `y=A cos (logx)+Bsin(logx)` Differentiating w.r. to x, we get `(dy)/(dx)=-A sin(logx)xx(1)/(x)+B cos (logx)xx(1)/(x)` `x(dy)/(dx)=-Asin(logx)+B cos (logx)` Again differentiating, we get `x(d^(2)y)/(dx^(2))+(dy)/(dx)=-Acos(logx)xx(1)/(x)-B sin (log x)xx(1)/(x)` `x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)=-[A cos (logx)+B sin (logx)]` `x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)=-y` `x^(2)(dy)/(dx)+y=0` | |