Saved Bookmarks
| 1. |
Evaluate `int (xtan^(-1)x)/(1+x^2)^(3/2) dx` |
|
Answer» `Let x=tantheta` `dx=sec^2d theta` `1+x^2=1+tan^2theta=sec^2theta` `int(xtan^(-1)xdx)/(1+x^2)^(3/2)` `int(tantheta*theta*sec^2theta*dthet a)/(sec^2theta)^(3/2)` `inttheta*tantheta*sec^2theta/sec^3theta dthet a` `inttheta*sinthetad theta` `-thetacostheta+sintheta+c` `(-tna^(-1)x)/sqrt(1+x^2)+x/sqrt(1+x^2)+c`. |
|