Saved Bookmarks
| 1. |
Evaluate : `intx log x dx` |
|
Answer» Let `I=int x log x dx` Integrating by parts, we get `=log x int x dx-int[(d)/(dx)(logx).intxdx]dx` `=logx.(x^(2))/(2)-int(1)/(x).(x^(2))/(2)dx` `=(1)/(2)x^(2).logx-(1)/(2)intx dx` `=(x^(2))/(2)log x-(x^(2))/(4)+c` |
|