1.

Evaluate : `intx log x dx`

Answer» Let `I=int x log x dx`
Integrating by parts, we get
`=log x int x dx-int[(d)/(dx)(logx).intxdx]dx`
`=logx.(x^(2))/(2)-int(1)/(x).(x^(2))/(2)dx`
`=(1)/(2)x^(2).logx-(1)/(2)intx dx`
`=(x^(2))/(2)log x-(x^(2))/(4)+c`


Discussion

No Comment Found

Related InterviewSolutions