InterviewSolution
Saved Bookmarks
| 1. |
Evaluate: \(\lim\limits_{x \to 0}(\frac{3^{2x}-2^{3x}}{x})\) |
|
Answer» \(\lim\limits_{x \to 0}(\frac{3^{2x}-2^{3x}}{x})\) \(=\lim\limits_{x \to 0}\{\frac{(3^{2x}-1)-(2^{3x}-1)}{x}\}\) \(=\lim\limits_{x \to 0}\frac{3^{2x}-1}{x}-\lim\limits_{x \to 0}\frac{2^{3x}-1}{x}\) \(=\lim\limits_{x \to 0}\frac{1}{2}[\frac{3^{2x}-1}{x}]-3.[\lim\limits_{x \to 0}\frac{2^{3x}-1}{x}]\) = 2 ∙ (log 3) − 3(log 2) = log32 − log23 = log \(\frac{9}{8}\) |
|