InterviewSolution
Saved Bookmarks
| 1. |
Evaluate : \(\lim\limits_{x \to 0}\frac{e^x-e^{sinx}}{x-sinx}\) |
|
Answer» \(\lim\limits_{x \to 0}\frac{e^x-e^{sinx}}{x-sinx}\) \(=\lim\limits_{x \to 0}e^{sin\,x}(\frac{e^{x-sinx}-1}{x-sinx})\) \(=\lim\limits_{x \to 0}e^{sin\,x}.\lim\limits_{x \to 0}(\frac{e^{x-sinx}-1}{x-sinx})\) \(=e^{sin0}.1\) = 1 |
|