1.

Evaluate `lim_(x rarr 2) [(x^(2) - 5x + 6)/(x^(2) - 3x + 2)]`.

Answer» When `x = 2, (4 -10 + 6)/(4 - 6 + 2)=(0)/(0)`, which is an indeterminate form.
Now, `x^(2) - 5x + 6 = (x-3)(x-2)`
`x^(2) - 3x + 2 = (x-1)(x-2)`
`" "underset(x rarr 2)("lim")[(x^(2) - 5x + 6)/(x^(2) - 3x + 2)]=underset(x rarr 2)("lim")[((x-3) (x-2))/((x-1) (x-2))]`
`" "underset(x rarr 2)("lim")[(x-3)/(x-1)]=[(2-3)/(2-1)]= -1`.


Discussion

No Comment Found