1.

Evaluate `lim_(x to 0) (tan(sgn(x)))/(sgn(x))` if exists.

Answer» Correct Answer - `tan1`
`underset(xto0^(+))lim(tan(sgn(x)))/(sgn(x))=(tan1)/(1)=tan1`
`underset(xto0^(-))lim(tan(sgn(x)))/(sgn(x))=tan(-1)/((-1))=tan1`
`:." "underset(xto0)lim(tan(sgn(x)))/(sgn(x))=tan1`


Discussion

No Comment Found