1.

Evaluate `lim_(x to 0) x[tan^(-1)((x+1)/(x+2))-tan^(-1)((x)/(x+2))].`

Answer» `underset(xtooo)limx["tan"^(-1)(x+1)/(x+2)-"tan"^(-1)(x)/(x+2)]`
`=underset(xtooo)limxtan^(-1)(((x+1)/(x+2)-(x)/(x+2))/(1+(x+1)/(x+2).(x)/(x+2)))`
`=underset(xtooo)limxtan^(-1)((x+2)/(2x^(2)+5x+4))`
`=underset(xtooo)lim(tan^(-)((x+2)/(2x^(2)+5x+4))/((x+2)/(2x^(2)+5x+4)))xx(x(x+2))/(2x^(2)+5x+4)`
`=1xx1/2=1/2`


Discussion

No Comment Found