InterviewSolution
Saved Bookmarks
| 1. |
Evaluate `lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).` |
|
Answer» When `xto0,` the expression `underset(xto0)lim(sqrt(2+x)-sqrt(2))/(x).` takes the form 0/0. Rationalizing the numerator, we have `underset(xto0)lim(sqrt(2+x)-sqrt(2))/(x)=underset(xto0)lim((sqrt(2+x)-sqrt(2))(sqrt(2+x)+sqrt(2)))/(x(sqrt(2+x)+sqrt(2)))` `=underset(xto0)lim(2+x-2)/(x(sqrt(2+x)+sqrt2))` `=underset(xto0)lim(1)/(sqrt(2+x)+sqrt(2))=(1)/(2sqrt(2))` |
|