InterviewSolution
| 1. |
Evaluate the following:(i) \(\displaystyle\sum_{n=1}^{11} (2 + 3^n)\)(ii) \(\displaystyle\sum_{k=1}^{n} (2^k + 3^{k - 1})\)(iii) \(\displaystyle\sum_{n=2}^{10} 4^n\) |
|
Answer» (i) \(\displaystyle\sum_{n=1}^{11} (2 + 3^n)\) = (2 + 31) + (2 + 32) + (2 + 33) + … + (2 + 311) = 2×11 + 31 + 32 + 33 + … + 311 = 22 + 3(311 – 1)/(3 – 1) [by using the formula, a(1 – rn )/(1 – r)] = 22 + 3(311 – 1)/2 = [44 + 3(177147 – 1)]/2 = [44 + 3(177146)]/2 = 265741 (ii) \(\displaystyle\sum_{k=1}^{n} (2^k + 3^{k - 1})\) = (2 + 30) + (22 + 3) + (23 + 32) + … + (2n + 3n-1) = (2 + 22 + 23 + … + 2n) + (30 + 31 + 32 + …. + 3n-1) Firstly let us consider, (2 + 22 + 23 + … + 2n) Where, a = 2, r = 22/2 = 4/2 = 2, n = n By using the formula, Sum of GP for n terms = a(rn – 1 )/(r – 1) = 2 (2n – 1)/(2 – 1) = 2 (2n – 1) Now, let us consider (30 + 31 + 32 + …. + 3n) Where, a = 30 = 1, r = 3/1 = 3, n = n By using the formula, Sum of GP for n terms = a(rn – 1 )/(r – 1) = 1 (3n – 1)/ (3 – 1) = (3n – 1)/2 So, \(\displaystyle\sum_{k=1}^{n} (2^k + 3^{k - 1})\) = (2 + 22 + 23 + … + 2n) + (30 + 31 + 32 + …. + 3n) = 2 (2n – 1) + (3n – 1)/2 = 1/2 [2n+2 + 3n – 4 – 1] = 1/2 [2n+2 + 3n – 5] (iii) \(\displaystyle\sum_{n=2}^{10} 4^n\) = 42 + 43 + 44 + … + 410 Where, a = 42 = 16, r = 43/42 = 4, n = 9 By using the formula, Sum of GP for n terms = a(rn – 1 )/(r – 1) = 16 (49 – 1)/(4 – 1) = 16 (49 – 1)/3 = 16/3 [49 – 1] |
|