InterviewSolution
Saved Bookmarks
| 1. |
Find the sum to n terms of the series, 7 + 77 + 777 + ...... . |
|
Answer» Sn = 7 + 77 + 777 + ..... to n terms = 7 [1 + 11 + 111 + ..... to n terms] = \(\frac{7}{9}\) [9 + 99 + 999 + ..... to n terms] = \(\frac{7}{9}\) [(10 – 1) + (100 – 1) + (1000 – 1) + ..... to n terms] = \(\frac{7}{9}\) [{10 + 102 + 103 + ..... to n terms} – {1 + 1 + 1 + ..... to n terms}] = \(\frac{7}{9}\) \(\bigg[\frac{10(10^n-1)}{10-1}-n\bigg]\) = \(\frac{7(10^{n+1})-10}{81}-\frac{7}{9}n.\) |
|