InterviewSolution
Saved Bookmarks
| 1. |
Six positive numbers are in G.P. such that their product is 1000. If the fourth term is 1, then find the last term. |
|
Answer» Let the six numbers in G.P. be \(\frac{a}{r^5}\), \(\frac{a}{r^3}\), \(\frac{a}{r}\), ar, ar3, ar5. Then, Product = 1000 ⇒ \(\frac{a}{r^5}\) x \(\frac{a}{r^3}\) x \(\frac{a}{r}\) x ar x ar3 x ar5 ⇒ a6 = 1000 ⇒ a = \(\sqrt{10}\) Given, Fourth term = t4 = ar = 1 ⇒ \(\sqrt{10}\) x r = 1 ⇒ \(\frac{1}{\sqrt{10}}\) ∴ Last term = ar5 = \(\sqrt{10}\) x\(\bigg(\)\(\frac{1}{\sqrt{10}}\)\(\bigg)\)= \(\frac{1}{100}.\) |
|