InterviewSolution
Saved Bookmarks
| 1. |
Evaluate the left- and right-hand limits of the function defined `f(x)={{:(1+x^(2)",if "0lexlt1),(2-x", if" xgt1):}"at "x=1. "Also, show that `lim_(xto1) f(x)` does not exist. |
|
Answer» LHL of `f(x)` at x=1 is `underset(xto1^(-))limf(x)=underset(hto0)f(1-h)` `=underset(hto0)lim[1+(1-h)^(2)]` `=underset(hto0)lim(2-2h+h^(2))=2` RHL of f(x) at x=1 is `underset(xto1^(+))limf(x)=underset(hto0)limf(1+h)` `=underset(hto0)lim[2-(1+h)]` `underset(hto0)lim(1-h)=1` Clearly, `underset(xto1^(-))limf(x)neunderset(xto1^(+))f(x)` So, `underset(xto1)limf(x)` does not exist. |
|