1.

Evaluate, `underset(xto1)"lim"(x^(4)-1)/(x-1)= underset(xtok)"lim"(x^(3)-k^(3))/(x^(2)-k^(2))` , then find the value of k.A. `(4)/(3)`B. `(8)/(3)`C. `(2)/(3)`D. none of these

Answer» Correct Answer - B
We have,
`lim_(xto1)(x^4-1)/(x-1)=lim_(xto1)(x^4-1^4)/(x-1)=4(1)^(4-1)=4`
and `lim_(x to k) (x^3-k^3)/(x^2-k^2)`
` =lim_(x to k) (x^3-k^3)/(x-k)xx(x-k)/(x^2-k^2)`
`lim_(x to k) (x^3-k^3)/(x-k)div (x^2-k^2)/(x-k)`
` lim_(xto k) (x^3-k^3)/(x-k)div lim_(x to k)(x^3-k^3)/(x -k) = (3k^2)/(2k)=(3)/(2)k`
`therefore lim_(x to 1) (x^4-1)/(x-1)=lim_(x tok)(x^3-k^3)/(x^2-k^2)rArr 4=(3k)/(2)rArrk=(8)/(3)`.


Discussion

No Comment Found