InterviewSolution
| 1. |
Exercise 3. Look at these pictures. Then complete the sentences given below witha comparative form. Use than where necessary. Try to use different phrases fromamong those given above: (oral practice first)e form: (oral deOne,to move a bit1. The second dress isthe first onengApoorvances using a com2. Anu isApoorvapast sixMadhu3. Of the two girls, Madhu is reading79ammar and CoComparisons |
|
Answer» When we ADD 6 to the numerator of a fraction, we get 1/2. When we add 7 to the denominator of the same fraction, we get 1/3. ⇝ To FIND :- The Fraction by Forming 2 equations. ⇝ Solution :- Let For the Original Fraction : Numerator = x Denominator = y So Original Fraction is : \dfrac{\text x}{\text y} y x
❒ When 6 is added to The Numerator : Fraction Becomes : \dfrac{\text x+6}{\text y} y x+6
★ According To Question : \begin{gathered} \dfrac{\text x + 6}{\text y} = \frac{1}{2} \\ \end{gathered} y x+6
= 2 1
\begin{gathered}:\longmapsto2(\text x + 6) = \text y \\ \end{gathered} :⟼2(x+6)=y
\begin{gathered}:\longmapsto2\text x + 12 = \text y \\ \end{gathered} :⟼2x+12=y
\begin{gathered}:\longmapsto2\bf x - y = - 12 \: ----(1) \\ \end{gathered} :⟼2x−y=−12−−−−(1)
❒ When 7 is added to The Denominator : Fraction Becomes : \dfrac{\text x}{\text y+6} y+6 x
★ According To Question : \begin{gathered} \dfrac{\text x}{\text y + 7} = \frac{1}{3} \\ \end{gathered} y+7 x
= 3 1
\begin{gathered}:\longmapsto3\text x = \text y + 7 \\ \end{gathered} :⟼3x=y+7
\begin{gathered}:\longmapsto \bf 3x - y = 7 \: - - - - (2) \\ \end{gathered} :⟼3x−y=7−−−−(2)
✏ Subtracting (1) From (2) : \begin{gathered}\purple{ \Large :\longmapsto \underline {\BOXED{{\bf x = 19} }}} \\ \end{gathered} :⟼ x=19
✏ Putting Value of x in (2) : \begin{gathered}:\longmapsto3 \times 19 - \text y = 7 \\ \end{gathered} :⟼3×19−y=7
\begin{gathered}:\longmapsto57 - \text y = 7 \\ \end{gathered} :⟼57−y=7
\begin{gathered}:\longmapsto - \text y = 7 - 57 \\ \end{gathered} :⟼−y=7−57
\begin{gathered}:\longmapsto \cancel - \text y = \cancel- 50 \\ \end{gathered} :⟼ −
y= −
50
\purple{ \Large :\longmapsto \underline {\boxed{{\bf y = 50} }}}:⟼ y=50
As, Original Fraction = \dfrac{\text x}{\text y} y x
Hence, \large\underline{\pink{\underline{\frak{\pmb{\text Original \:\: Fraction = \dfrac{19}{50} }}}}} OriginalFraction= 50 19
OriginalFraction= 50 19
Explanation: When we add 6 to the numerator of a fraction, we get 1/2. When we add 7 to the denominator of the same fraction, we get 1/3. ⇝ To Find :- The Fraction by Forming 2 equations. ⇝ Solution :- Let For the Original Fraction : Numerator = x Denominator = y So Original Fraction is : \dfrac{\text x}{\text y} y x
❒ When 6 is added to The Numerator : Fraction Becomes : \dfrac{\text x+6}{\text y} y x+6
★ According To Question : \begin{gathered} \dfrac{\text x + 6}{\text y} = \frac{1}{2} \\ \end{gathered} y x+6
= 2 1
\begin{gathered}:\longmapsto2(\text x + 6) = \text y \\ \end{gathered} :⟼2(x+6)=y
\begin{gathered}:\longmapsto2\text x + 12 = \text y \\ \end{gathered} :⟼2x+12=y
\begin{gathered}:\longmapsto2\bf x - y = - 12 \: ----(1) \\ \end{gathered} :⟼2x−y=−12−−−−(1)
❒ When 7 is added to The Denominator : Fraction Becomes : \dfrac{\text x}{\text y+6} y+6 x
★ According To Question : \begin{gathered} \dfrac{\text x}{\text y + 7} = \frac{1}{3} \\ \end{gathered} y+7 x
= 3 1
\begin{gathered}:\longmapsto3\text x = \text y + 7 \\ \end{gathered} :⟼3x=y+7
\begin{gathered}:\longmapsto \bf 3x - y = 7 \: - - - - (2) \\ \end{gathered} :⟼3x−y=7−−−−(2)
✏ Subtracting (1) From (2) : \begin{gathered}\purple{ \Large :\longmapsto \underline {\boxed{{\bf x = 19} }}} \\ \end{gathered} :⟼ x=19
✏ Putting Value of x in (2) : \begin{gathered}:\longmapsto3 \times 19 - \text y = 7 \\ \end{gathered} :⟼3×19−y=7
\begin{gathered}:\longmapsto57 - \text y = 7 \\ \end{gathered} :⟼57−y=7
\begin{gathered}:\longmapsto - \text y = 7 - 57 \\ \end{gathered} :⟼−y=7−57
\begin{gathered}:\longmapsto \cancel - \text y = \cancel- 50 \\ \end{gathered} :⟼ −
y= −
50
\purple{ \Large :\longmapsto \underline {\boxed{{\bf y = 50} }}}:⟼ y=50
As, Original Fraction = \dfrac{\text x}{\text y} y x
Hence, \large\underline{\pink{\underline{\frak{\pmb{\text Original \:\: Fraction = \dfrac{19}{50} }}}}} OriginalFraction= 50 19
OriginalFraction= 50 19
|
|