| 1. |
Expand sec x by maclaurins series |
|
Answer» Answer: sec(X) = 1 + x²/2 + 5x⁴/24 + ......... Step-by-step EXPLANATION:Concept Maclaurins series of a function F(x) is a special case of Taylor Series EXPANSION. In maclaurin series, the function is expanded AROUND a = 0. Maclaurin series of f(x) is given by f(x) = f(0) + f´(0)x + f´´(0)x²/2! + f´´´(0)x³/3! + ....... Calculations It is given that
f(x) = sec(x) ⇒ f(0) = sec(0) = 1 f´(x) = sec(x)tan(x) ⇒ f´(0) = sec(0)tan(0) = 1*0 = 0 f´´(x) = sec³(x) + sec(x)tan²(x) ⇒ f´´(0) = sec³(0) + sec(0)tan²(0) = 1 + 1*0 ⇒ f´´(0) = 1 f´´´(x) = 3sec²(x).sec(x)tan(x) + sec(x).2tan(x)sec²(x) + sec(x)tan(x).tan²(x) f´´´(x) = 5sec³(x)tan(x) + sec(x)tan³(x) ⇒ f´´´(0) = 5sec³(0)tan(0) + sec(0)tan³(0) ⇒ f´´´(0) = 0 f´´´´(x) = 5sec³(x)sec²(x) + 5.3sec²(x).sec(x)tan(x).tan(x) + sec(x).3tan²(x)sec²(x) + sec(x)tan(x).tan³(x) f´´´´(x) = 5sec⁵(x) + 18sec³(x)tan²(x) + sec(x)tan³(x) ⇒ f´´´´(0) = 5sec⁵(0) + 18sec³(0)tan²(0) + sec(0)tan³(0) ⇒ f´´´´(0) = 5 Therefore, Maclaurin Series Expansion of sec(x) is sec(x) = 1 + 0.x + x²/2! + 0.x³/3! + 5.x⁴/4! + ........ = 1 + x²/2 + 5x⁴/24 + ......... |
|