1.

Explainanalytically how thestationarywaves are formed.Hence show that the distance between node and adjacent antinode is (lambda)/(4). A set of 48 tuning forks is arrangedin a series ofdescending frequencies such thateach fork gives 4 beatsper secondwith preceding one. The frequenciesof first fork is 1.5 timesthe frequency of the last fork, fidn the frequency of the first and 42nd tuning fork.

Answer»

SOLUTION :AMPLITUDE of antinodesis maximum,
`A=+ -2a`
`A = 2a cos '(2pix)/(lambda)`
`:.+ -2a = 2a cos'(2pix)/(lambda)`
`rArr cos'(2pix)/(lambda) = +-1`
`:. (2pix)/(lambda) = 0,pi,2pi`
or `(2pir)/(lambda) = Ppi`
`:. x = (Plambda)/(2) = P(lambda/2)`
(where `P = 0,1,2"....."`)
For `x = 0, (lambda)/(2), lambda, (3lambda)/(2), "........."` antinodesare produced.
Thus,distancebetween any two successive antinodesis `lambda/2`.
AMPLITUDEOF nodes is zero , `A = 0`
`:. A = 2a cos '(2pix)/(lambda)`
`:. 0 = 2a cos'(2pix)/(lambda)`
`:. cos '(2pix)/(lambda) = 0`
`:. (2pix)/(lambda) = (pi)/(2), (3pi)/(2), (5pi)/(2) "...."`
`:.x= (2p - 1) lambda/4` (where ` p = 1,2 "...."`)
For `x= lambda/4, (3lambda)/(4), (5lambda)/(4) "...."`nodes areproduced.
Thus, distance between any two successive nodes is `lambda/2`.
The distance between node and adjacentantinodesis `lambda/4`.
Numerical :
Given : `n_(1) = 1.5 n_(48)` and 4 beat/second are produced with preceddingone.
The set of tuningforks are arrangedin decreasingorderof frequencies .
`:. n_(2) = n_(1) - 4`
`n_(3)= n_(2) - 4 = n_(1) - 2 xx 4`
`n_(48) =n_(47) - 4 = n_(1) - 47 xx 4`
`rArr n_(48) =n_(1) - 188`
`rArr n_(48) = 1.5n_(48) - 188 ( :' n_(1) = 1.5n_(48))`
`rArr 0.5n_(48) = 188`
`rArr n_(48) = 376`
`rArr n_(1) = 1.5n_(48) = 1.5 xx 376= 564`
`n_(42) = n_(1) - 164 = 564 - 164`
`:. n_(42) = 400 Hz`.


Discussion

No Comment Found

Related InterviewSolutions