InterviewSolution
Saved Bookmarks
| 1. |
Express (cos 5x - cos 7x) as a product of sines or cosines.1. 2 cos 4x cos x2. 2 sin 4x sin x3. 2 sin 6x sin x4. 2 cos 6x cos x |
|
Answer» Correct Answer - Option 3 : 2 sin 6x sin x Concept: cos A - cos B = 2 sin \(\rm (\frac {B + A}{2})\) sin \(\rm (\frac {B - A}{2})\)
Calculations: To express (cos 5x - cos 7x) as a product of sines or cosines or sines and cosines we know the trigonometric formula, cos A - cos B = 2 sin \(\rm (\frac {B + A}{2})\) sin \(\rm (\frac {B - A}{2})\) Here, A = 5x and B = 7x (cos 5x - cos 7x) = 2 sin \(\rm (\frac {7x + 5x}{2})\) sin \(\rm (\frac {7x - 5x}{2})\) (cos 5x - cos 7x) = 2 sin 6x sin x |
|