 
                 
                InterviewSolution
| 1. | Express each of the following as a rational number in the form \(\frac{p}{q}\):(i) \(6^{-1}\)(ii) \((-7)^{-1}\)(iii) \((\frac{1}{4})^{-1}\)(iv) \((-4)^{-1}\times (\frac{-3}{2})^{-1}\)(v) \((\frac{3}{5})^{-1}\times (\frac{5}{2})^{-1}\) | 
| Answer» (i) \(6^{-1}\) ⇒ \(6^{-1}\)= \(\frac{1}{6}\)[Using \(a^{-n}\)= \(\frac{1}{a^{n}}\)] (ii) \((-7)^{-1}\) ⇒ \((-7)^{-1}\)= \(\frac{1}{-7}\)= \(-\frac{1}{7}\)[Using \(a^{-n}\)= \(\frac{1}{a^{n}}\)] (iii) \((\frac{1}{4})^{-1}\) ⇒ \((\frac{1}{4})^{-1}\)= 4[Using \(a^{-n}\)= \(\frac{1}{a^{n}}\)] (iv) \((-4)^{-1}\times (\frac{-3}{2})^{-1}\) ⇒ \((-4)^{-1}\times (\frac{-3}{2})^{-1}\)=\(\frac{1}{-4}\times \frac{2}{-3}\)=\(\frac{2}{12}\)=\(\frac{1}{6}\)[Using \(a^{-n}\)= \(\frac{1}{a^{n}}\)] (v) \((\frac{3}{5})^{-1}\times (\frac{5}{2})^{-1}\) ⇒ \((\frac{3}{5})^{-1}\times (\frac{5}{2})^{-1}\)= \(\frac{5}{3}\times \frac{2}{5}\)=\(\frac{10}{15}\)=\(\frac{2}{3}\) [Using \(a^{-n}\)= \(\frac{1}{a^{n}}\)] | |