1.

Express each of the following as a rational number in the form \(\frac{p}{q}\):(i) \(6^{-1}\)(ii) \((-7)^{-1}\)(iii) \((\frac{1}{4})^{-1}\)(iv) \((-4)^{-1}\times (\frac{-3}{2})^{-1}\)(v) \((\frac{3}{5})^{-1}\times (\frac{5}{2})^{-1}\)

Answer»

(i) \(6^{-1}\)

⇒ \(6^{-1}\)\(\frac{1}{6}\)[Using \(a^{-n}\)\(\frac{1}{a^{n}}\)]

 (ii) \((-7)^{-1}\)

⇒ \((-7)^{-1}\)\(\frac{1}{-7}\)= \(-\frac{1}{7}\)[Using \(a^{-n}\)\(\frac{1}{a^{n}}\)]

 (iii) \((\frac{1}{4})^{-1}\)

⇒ \((\frac{1}{4})^{-1}\)= 4[Using \(a^{-n}\)\(\frac{1}{a^{n}}\)]

 (iv) \((-4)^{-1}\times (\frac{-3}{2})^{-1}\)

⇒ \((-4)^{-1}\times (\frac{-3}{2})^{-1}\)=\(\frac{1}{-4}\times \frac{2}{-3}\)=\(\frac{2}{12}\)=\(\frac{1}{6}\)[Using \(a^{-n}\)\(\frac{1}{a^{n}}\)]

 (v) \((\frac{3}{5})^{-1}\times (\frac{5}{2})^{-1}\)

⇒ \((\frac{3}{5})^{-1}\times (\frac{5}{2})^{-1}\)=  \(\frac{5}{3}\times \frac{2}{5}\)=\(\frac{10}{15}\)=\(\frac{2}{3}\) [Using \(a^{-n}\)\(\frac{1}{a^{n}}\)]



Discussion

No Comment Found