1.

Express the complex number `(-sqrt(3)-i)` in polar form.

Answer» The given complex number is `z = (-sqrt(3)-i)`.
Let its polar form be `z=r(cos theta + i sin theta)`.
Now, `r=|z|=sqrt((-sqrt(3))^(2)+(-1)^(2))=sqrt(4)=2`.
Let `alpha` be the acute angle, given by
`tan alpha=|(Im(z))/(Re(z))|=|(-1)/(-sqrt(3))|=(1)/(sqrt(3)) rArr alpha = (pi)/(6)`.
Clearly, the point representing the complex number `z = (-sqrt(3)-i)` is `P(-sqrt(3), -1)`, which lies in the third quadrant.
`therefore" "arg(z) = theta = -(pi-alpha)=-(pi-(pi)/(6))=(-5pi)/(6)`.
Thus, `r=|z|=2 and theta = (-5pi)/(6)`.
Hence, the polar form of `z = (-sqrt(3)-i)` is given by
`z=2{cos((-5pi)/(6))+i sin((-5pi)/(6))}, i.e., 2("cos"(5pi)/(6)-"i sin"(5pi)/(6))`.


Discussion

No Comment Found