1.

`f(x)=|x|+|x-1|` की `x=0` और `x=1`पर सांतत्य का परीक्षण। कीजिए ।

Answer» `" "|x|={{:(x",",xge0),(-x",",xlt0):}`
और `" "|x-1|={{:(x-1",",xge1),(-(x-1)",",xlt1):}`
`therefore f(x)=|x|+|x-1|={{:(1-2x",",xlt0),(" "1",",0lexlt1),(2x-1",",xle1):}`
x = 0 पर
f (0) = 1
`R.H.L.=underset(xrarr0^(+))(lim)f(x)=underset(hrarr0)(lim)f(0+h)=underset(hrarr0)(lim)1=1`
`L.H.L.=underset(xrarr0^(-))(lim)f(x)=underset(hrarr0)(lim)f(0-h)`
`=underset(hrarr0)(lim){1-2(-4)}=1+0=1`
`because R.H.L.=f(0)=L.H.L.`
`therefore f(x),x=0` पर सतत है।|
x = 1 पर
`f(1)=2(1)-1=1`
`R.H.L.=underset(xrarr1^(+))(lim)f(x)=underset(hrarr0)(lim)f(1+h)`
`=underset(hrarr0)(lim)2(1+h)-1=2(1+0)-1=1`
`L.H.L.=underset(xrarr1^(-))(lim)2(1+h)-1=2(1+0)-1=1`
`L.H.L.=underset(xrarr1^(-))(lim)f(x)=underset(hrarr0)(lim)f(1-h)=underset(hrarr0)(lim)(1)=1`
`because R.H.L. =f(1) = L.H.L.`
`therefore f(x),x=1` पर सतत है |


Discussion

No Comment Found