1.

Factor of x^5-y^5ans this question correctly I will mark as brainlist​

Answer»

ANSWER:

Explanation:

GIVEN:

x

5

y

5

First note that if

x

=

y

then

x

5

y

5

=

0

. Hence we can DEDUCE that

(

x

y

)

is a factor:

x

5

y

5

=

(

x

y

)

(

x

4

+

x

3

y

+

x

2

y

2

+

x

y

3

+

y

4

)

We can factor the remaining quartic by making USE of its symmetry, expressing it in terms of a quadratic in

(

x

y

+

y

x

)

as follows:

Note that:

(

x

y

+

y

x

)

2

=

x

2

y

2

+

2

+

y

2

x

2

So we find:

x

4

+

x

3

y

+

x

2

y

2

+

x

y

3

+

y

4

=

x

2

y

2

(

x

2

y

2

+

x

y

+

1

+

y

x

+

y

2

x

2

)

=

x

2

y

2

(

(

x

y

+

y

x

)

2

+

(

x

y

+

y

x

)

1

)

=

x

2

y

2

(

(

x

y

+

y

x

)

2

+

(

x

y

+

y

x

)

+

1

4

5

4

)

=

x

2

y

2

(

(

x

y

+

y

x

)

+

1

2

)

2

(

5

2

)

2

=

x

2

y

2

(

(

x

y

+

y

x

)

+

1

2

)

5

2

)

(

(

x

y

+

y

x

)

+

1

2

)

+

5

2

)

=

x

2

y

2

(

x

y

+

(

1

2

5

2

)

+

y

x

)

(

x

y

+

(

1

2

+

5

2

)

+

y

x

)

=

(

x

2

+

(

1

2

5

2

)

x

y

+

y

2

)

(

x

2

+

(

1

2

+

5

2

)

x

y

+

y

2

)

So putting it all together, we have:

x

5

y

5

=

(

x

y

)

(

x

2

+

(

1

2

5

2

)

x

y

+

y

2

)

(

x

2

+

(

1

2

+

5

2

)

x

y

+

y

2

)



Discussion

No Comment Found

Related InterviewSolutions