1.

Factorise: (x^2-4x) (x^2-4x-1) -20​

Answer»

Answer: (x-5)(x+1)(x-2)^{2}

Step-by-step explanation:

(x^{2} - 4x)(x^{2} -4x -1) - 20

Let  x^{2} - 4x  be  = a

(a)(a -1) - 20\\

=a^{2} -a - 20

Now, FACTORISE it USING middle TERM splitting.

= a^{2} -5a + 4a - 20

= a(a - 5) + 4(a - 5)

= (a-5)(a+4)

Now, put the value of 'a'.

= (x^{2} - 4x -5)(x^{2} - 4x + 4)

Now, factorise the TWO quadratic expressions in the brackets by middle term splitting. You will get 4 factors (2 factors of each EXPRESSION).

= [x^{2} - 5x + x -5][x^{2} - 2x -2x + 4]

= [x(x-5) + 1(x -5)][x(x-2)-2(x -2)]

= (x-5)(x+1)(x-2)(x-2)

= (x-5)(x+1)(x-2)^{2}



Discussion

No Comment Found

Related InterviewSolutions