1.

Factorize `(i) x^2+5sqrt(3)x +12` `(ii) x^2+3sqrt(3)x-30`

Answer» (i) The given expression is `x^2+5sqrt(3)x+12`.
We split `5sqrt(3)` into two parts whose sum is `5sqrt(3)` and product 12.
Clearly, `(4sqrt(3)+sqrt(3))=5sqrt(3) and (4sqrt(3)xx sqrt(3))=12`.
`therefore x^2+5sqrt(3)x+12=x^2+4sqrt(3)x+sqrt(3)x +12`
`=x(x+4sqrt(3))+sqrt(3)(x+4sqrt(3))`
`=(x+4sqrt(3))(x+sqrt(3))`
Hence, `x^2+5sqrt(3)x+12 =(x+4sqrt(3))(x+sqrt(3))`.
(ii) The given expression is `x^2+3sqrt(3)x-30`.
We split `3sqrt(3)` into two whose sum is `3sqrt(3)` and product `-30`.
Clearly, `(5sqrt(3)-2sqrt(3))=3sqrt(3) and 5sqrt(3)xx {-2sqrt(3)}=-30`.
`therefore x^2+3sqrt(3)x-30=x^2+5sqrt(3)x-2sqrt(3)x-30`
`=x(x+5sqrt(3))-2sqrt(3)(x+5sqrt(3))`
`=(x+5sqrt(3))(x-2sqrt(3))`.
Hence, `x^2+3sqrt(3)x-30 =(x+5sqrt(3))(x-2sqrt(3))`.


Discussion

No Comment Found