1.

Find a point on the x-axis, which is equidistant from the point (7, 6) and (3, 4).

Answer»

Key points to solve the problem: 

Idea of distance formula- Distance between two points A(x1,y1) and B(x2,y2) is given by- AB = \(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\) 

As, the point is on x-axis so y-coordinate is 0. 

Let the coordinate be (x,0) 

Given distance of (x,0) from (7,6) and (3,4) is same. 

∴ using distance formula we have:

\(\sqrt{(x-7)^2 + (0-6)^2}\) = \(\sqrt{(x - 3)^2 + (0 - 4)^2}\)

Squaring both sides, 

we have:

(x - 7)2 + (0 - 6)2 = (x -3)2 + (0 - 4)2

\(\Rightarrow\) x2 + 49 - 14x + 36 = x2 + 9 - 6x + 16

\(\Rightarrow\) 8x = 60 \(\Rightarrow\) x = \(\frac{60}{8} = \frac{15}{2} = 7.5\)

point on x-axis is (7.5,0)



Discussion

No Comment Found

Related InterviewSolutions