1.

Find a quadratic polynomial whose sum of zeros is 9 / 2 and product of zeros is 2 ​

Answer»

-----------------------

♣ Given :-

For a Quadratic Polynomial :

   

  • Product of Zeros = 2

-----------------------

♣ To Find :-

  • The Quadratic Polynomial.

-------------------------------

♣ Key POINT :-

If sum and product of zeros of any quadratic polynomial are s and p respectively,

Then,

The quadratic polynomial is given by :-

\bf  {x}^{2}  - s \: x + p

-------------------------------

♣ Solution :-

Here,

  • Sum = s = 9/2

  • Product = p = 2

So,

Required Polynomial should be

\bf{x}^{2}  - \dfrac{9}{2} x + 2.

\Large\purple{:\longmapsto\pmb{2 {x}^{2}  -9x +4}}

\Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-----------------------



Discussion

No Comment Found

Related InterviewSolutions