1.

Find a quadratic polynomial whose zeroes are 2+√2 and 2-√2​

Answer»

\leadsto \sf \pink{ Solution:-}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\pink  \leadsto  \footnotesize\sf{\alpha  = 2 +  \sqrt{2} \:  \:  \:  \: and  \:  \:  \:  \:  \beta  = 2 -  \sqrt{2} }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\leadsto\footnotesize \sf \pink{We \:  know \:  that  \: Sum  \: of  \: zeros = \frac{-b}{a}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\pink  \leadsto  \footnotesize\sf{\alpha +  \beta  =  \frac{ - b}{a}  }

\pink  \leadsto  \footnotesize\sf{  2  +  \sqrt{2} + 2 -  \sqrt{2}  =  \frac{ - b}{a}    }

\pink  \leadsto  \footnotesize\sf{  2  +   \cancel{\sqrt{2}} + 2 -   \cancel{\sqrt{2}}  =  \frac{ - b}{a}   }

\pink  \leadsto  \footnotesize\sf{  4 =  \frac{ - b}{a}  }

\small \boxed{ \underline{ \pink  \leadsto  \footnotesize\sf{  -  4 =  \frac{ b}{a}  }}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\leadsto\footnotesize \sf \pink{ Now,Product \:  of \:  zeros  = \frac{c}{a}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\pink  \leadsto  \footnotesize\sf{\alpha \beta  =  \frac{ c}{a}  }

\pink  \leadsto  \footnotesize\sf{(2 +  \sqrt{2})  \: ( 2 -  \sqrt{2})  =  \frac{c}{a} }

\pink  \leadsto  \footnotesize\sf{2  \: ( 2 -  \sqrt{2}) +  \sqrt{2} \: (2 -  \sqrt{2})    =  \frac{c}{a} }

\pink  \leadsto  \footnotesize\sf{4 -  2\sqrt{2}+  2 \sqrt{2}  -  ( { \sqrt{2} })^{2}    =  \frac{c}{a} }

\pink  \leadsto  \footnotesize\sf{4 -  \cancel{ 2\sqrt{2}}+   \cancel{2 \sqrt{2} } - 2    =  \frac{c}{a} }

\pink  \leadsto  \footnotesize\sf{2    =  \frac{c}{a} }

\small \boxed{ \underline{ \pink  \leadsto  \footnotesize\sf{2    =  \frac{c}{a} }}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\leadsto\footnotesize \sf \pink{General  \: Form  \: of \:  equation}

\pink\leadsto\footnotesize \sf{ {ax}^{2} + bx + c }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\leadsto\footnotesize \sf \pink{From  \: above \:  the  \: value \:  of  \: a  \: is  \: 1, b \:  is \:  -4 \:  and  \: c  \: is  \: 2}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\pink\leadsto\footnotesize \sf{Now  \: Substitute \:  value \:  of \:  a, b \:  and \:  c}

\leadsto\footnotesize \sf \pink{ {ax}^{2} + bx + c }

\leadsto\footnotesize \sf \pink{ {x}^{2}  - 4x + 2 }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize \sf { \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: OR}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\leadsto\footnotesize \sf \pink{ {x}^{2}  - sum \: of \: zeros(x) + product \: of \: zeros }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\pink\leadsto\footnotesize \sf { Product \:  of \:  zeros = 2}

\pink\leadsto\footnotesize \sf{ Sum  \: of  \: zeros = 4}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\leadsto\footnotesize \sf \pink{ {x}^{2}  - sum \: of \: zeros(x) + product \: of \: zeros }

\leadsto\footnotesize \sf \pink{ {x}^{2}  - 4x + 2 }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\boxed{  \underline{\pink\leadsto\footnotesize \sf { Quadratic \:  Equation  \: is  \:  {x}^{2} - 4x + 2 }}}



Discussion

No Comment Found

Related InterviewSolutions