

InterviewSolution
Saved Bookmarks
1. |
Find all possible values of expressions `(2+x^2)/(4-x^2)` |
Answer» Correct Answer - `(-oo, -1)cup[(1)/(2),oo)` `(2+x^(2))/(4-x^(2))=(6-(4-x^(2)))/(4-x^(2))=(6)/(4-x^(2))=1` Now, `x^(2) ge 0` ` :. -x^(2) le 0` `implies 4-x^(2) le 4` `implies (4-x^(2))/(6) le (2)/(3)` `implies -oo lt (4-x^(2))/(6) lt 0 " or "0 lt(4-x^(2))/(6) le (2)/(3)` `implies 0 gt (6)/(4-x^(2)) gt -oo gt (4-x^(2))/(6) ge (3)/(2)` `implies (6)/(4-x^(2)) in (-oo,0) cup [(3)/(2),oo)` `implies ((6)/(4-x^(2))-1) in (-oo,-1) cup [(1)/(2),oo)` |
|