

InterviewSolution
Saved Bookmarks
1. |
Find all possible values ( range) of the following quadratic expressions when `x in R` and when `x in [-3,2]` (a) `4x^2+28x+41` (b) `1+6x -x^2` |
Answer» Correct Answer - (a) `[-8,oo)` when `x in R; [-7,113]` when `x in [-3,2]` (b) `(-oo,10]` when `x in R;[-26,9]` when ` x in [-3,2]` (a) `4x^(2)+28x+41=(2x+7)^(2)-8` Now,`(2x+7)^(2)-8 ge 0 AA x in R.` `implies (2x+7)^(2)-8 ge -8 AA x in R` So, the values of the expression are `[-8, oo).` For ` x in [-3,2]` `-3 le x le 2` `implies -6 le 2x le 4` `implies 1le 2x+7 le 11` `implies 1 le (2x+7)^(2) le 121` `implies -7 le (2x+7)^(2)-8 le 113` Thus, for `x in [-3,2],` the values of the expression are `[-7,113].` (b) `1+6x-x^(2)=10-(x-3)^(2)` Now, `(x-3)^(2) ge 0 AA x in R.` `implies -(x-3)^(2) le 0 AA x in R` `implies 10-(x-3)^(2) le 10 AA x in R` So, the value of the expression are `(-oo,10].` For ` x in [-3,2]` ` -3 le x le 2` `implies -6 le x -3 le -1` `implies 1 le (x-3)^(2) le 36` `implies -36 le -(x-3)^(2) le -1` `implies -26 le 10-(x-3)^(2) le 9` Thus, for ` x in [-3,2]` values of the expression are `[-26,9].` |
|