InterviewSolution
Saved Bookmarks
| 1. |
find all the possible triplets `(a_(1), a_(2), a_(3))` such that `a_(1)+a_(2) cos (2x)+a_(3) sin^(2) (x)=0` for all real x. |
|
Answer» We have `a_(1)+a_(2) cos (2x) +a_(3) sin^(2) x=0` for all real x `:. a_(1)+a_(2) (1-2 sin^(2) x)+a_(3) sin^(2) x=0` `rArr (a_(1)+a_(2))+(-2a_(2)+a_(3)) sin^(2) x=0` Since this is true for all real x, we must have `a_(!)+a_(2)=0` and `-2a_(2)+a_(3)=0` `:. a_(2)=-a_(1)` and `a_(3)= -2a_(1)` Thus, there exists infinite triplets `(a_(1), -a_(1), -2a_(1))` |
|