| 1. |
Find all the values of x in between the range [0,2π] for the following equation 2sin(4x)-3cos(4x)=0 |
|
Answer» sin 2 x+cos 2 x=1 sin 4 x+cos 4 x+2SIN 2 xcos 2 x=1 sin 4 x+cos 4 x=1−2sin 2 xcos 2 x ...[1] sin 2 x+cos 2 x=1 sin x+cos 6 x+3sin 2 xcos 2 x(sin 2 x+cos 2 x)=1 sin 6 x+cos 6 x=1−3sin 2 xcos 2 x ...[2] ∣ 2sin 4 x+18cos 2 x − 2cos 4 x+18sin 2 x ∣=1 Squaring above equation ∴2sin 4 x+18cos 2 x+2cos 4 x+18sin 2 x−2( 2sin 4 x+18cos 2 x )( 2cos 4 x+18sin 2 x )=1 ∴2(sin 4 x+cos 4 x)+18(cos 2 x+sin 2 x)−1=2( 2sin 4 x+18cos 2 x )( 2cos 4 x+18sin 2 x ) ∴2(1−2sin 2 xcos 2 x)+18−1=2( 2sin 4 x+18cos 2 x )( 2cos 4 x+18sin 2 x ) ..( [Using[1] ) ∴19−4SIN 2 xcos 2 x=2( 2sin 4 x+18cos 2 x )( 2cos 4 x+18sin 2 x ) Squaring above equation ∴361+16sin 4 xcos 4 x−152sin 2 xcos 2 x=4(4sin 4 xcos 4 x+36cos 6 x+36sin 6 x+324sin 2 xcos 2 x) ∴361+16sin 4 xcos 4 x−152sin 2 xcos 2 x=16sin 4 xcos 4 x+144cos 6 x+144sin 6 x+1296sin 2 xcos 2 x ∴361=144(cos 6 x+sin 6 x)+1448sin 2 xcos 2 x ∴361=144(1−3sin 2 xcos 2 x)+1448sin 2 xcos 2 x ....( Using [2] ) ∴217=1016sin 2 xcos 2 x ∴217=254sin 2 2x ∴sin2x=± 254 217
Let sin −1
254 217
=θ sin2x=± 254 217
∴2x=sin −1
254 217
∴2x=θ,π−θ,2π+θ,3π−theta ∴x= 2 θ , 2 π−θ , 2 2π+θ , 2 3π−θ
2x=sin −1 (− 254 217
) ∴2x=π+θ,2π−θ,3π+θ,4π−θ ∴x= 2 π+θ , 2 2π−θ , 2 3π+θ , 2 4π−θ
So, total NUMBER of solutions =8 So, the answer is option (D) Step-by-step explanation: |
|