1.

Find all the zeros of the polynomial 2x⁴ + 7x - 19x² - 14x + 30, if two of its zeroes are √2 and -√2can anyone plss explain in notebook??​

Answer»

\huge\purple{\boxed{\underline{ANSWER}}}

GIVEN THAT:-

➪ polynomial = 2x⁴ + 7x3 - 19x² - 14x + 30 =

➪ two of its zeroes are √2 and -√2

EXPLANATION:-

Given that √2 and -√2 are two zeros of this polynomial so,

➪. (X - √2) and ( x + √2) will be TOW factor of this polynomial

as well as

➪ (x-√2)( x+√2) = ( x² - 2 ) will be also the factor of Given polynomial .

Now dividing the polynomial with ( x² - 2 )

⟶ \:  \:  \frac{2 {x}^{4}  +  7 {x}^{3} - 19 {x}^{2}   - 14x + 30 }{ {x}^{2} - 2 }  \\  \\ ⟶ \:  \: 2 {x}^{2}  + 7x - 15 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now we get a quadratic equation

so

⟶ \:  \: 2 {x}^{2}  + 7x - 15 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ ⟶ \:  \: 2 {x}^{2}  + 10x - 3x - 15 \\  \\ ⟶ \:  \: 2x(x + <klux>5</klux>) - 3(x + 5) \\  \\ ⟶ \:  \: (x + 5)(2x - 3) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ ⟶ \:  \: x =  - 5 \: and \:  \frac{3}{2 }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now the all zeros of Given polynomial

√2 , - √2 , -5 and 3/2 .

Thanks



Discussion

No Comment Found

Related InterviewSolutions