InterviewSolution
Saved Bookmarks
| 1. |
Find common roots of the equations `2sin^2x+sin^2 2x=2a n dsin2x+cos2x=tanxdot` |
|
Answer» We have `2 sin^(2) x+ sin^(2) 2x=2` ...(i) and `sin 2x+cos 2x=tan x` ...(ii) Solving Eq. (i), `sin^(2) 2x=2 cos^(2) x` `rArr 4 sin^(2) x cos^(2) x =2 cos^(2) x` `rArr cos^(2) x (2 sin^(2) x-1)=0` `rArr 2 cos^(2) x cos 2x=0` `rArr cos x=0 or cos 2x=0` `rArr x=(2n+1) pi/2 or x=(2n+1) pi/4, n in Z` ...(iii) Now solving Eq. (ii), `(2 tan x+1-tan^(2) x)/(1+tan^(2) x)=tan x` `rArr tan^(3) x+ tan^(2) x-tan x-1=0` `rArr (tan^(2) x-1) (tan x+1) =0` `rArr tan x= pm 1` `rArr x= n pi pm pi/4, n in Z` ...(iv) From Eqs. (iii) and (iv) , common roots are `(2n+1) pi/4`. |
|