1.

Find ∆f and df for the function f for the indicated values of x, ∆x and compare (i) f (x) = x3 – 2x2; x = 2, ∆x = dx = 0.5 (ii) f(x) = x2 + 2x + 3; x = -0.5, ∆x = dx = 0.1

Answer»

(i) y = f(x) = x3 – 2x2 

dy = (3x2 – 4x) dx

dy (when x = 2 and dx = 0.5) 

= [3(22) – 4(2)] (0.5) 

= (12 – 8)(0.5) = 4(0.5) = 2 

(i.e.,) df = 2 

Now ∆f = f(x + ∆x) – f(x) 

Here x = 2 and ∆x = 0.5 

f(x) = x3 – 2x2 

So f(x + ∆x) = f(2 + 0.5) 

= f(2.5) = (2.5)3 – 2(2.5)2 

= (2.5)2 [2.5 – 2] = 6.25 (0.5) = 3.125 

f(x) = f(2) = 23 – 2(22) = 8 – 8 = 0 

So ∆f = 3.125 – 0 = 3.125

(ii) y = f(x) = x2 + 2x + 3 

dy = (2x + 2) dx 

dy (when x = – 0.5 and dx = 0.1) 

= [2(-0.5) + 2] (0.1) 

= (-1 + 2) (0.1) 

= (1) (0.1) 

= 0.1 

(i.e.,) df = 0.1 

Now ∆f = f(x + ∆x) – f(x) 

Here x = -0.5 and ∆x = 0.1 

x2 + 2x + 3

f(x + ∆x) = f(-0.5 + 0.1) 

= f(-0.4)2 = (-0.4) + 2(-0.4) + 3 

= 0.16 – 0.8 + 3 = 3.16 – 0.8 = 2.36 

f(x) = f(-0.5) = (-0.5)2 + 2(-0.5) + 3 

= 0.25 – 1 + 3 = 3.25 – 1 = 2.25 

So ∆ f = f(x + ∆x) – f(x) = 2.36 – 2.25 = 0.11



Discussion

No Comment Found