1.

Find fog (2) and gof (1) when f: R → R; f(x) = x2 + 8 and g: R → R; g(x) = 3x3 + 1.

Answer»

Given as f: R → R; f(x) = x2 + 8 and g: R → R; g(x) = 3x3 + 1.

Consider that (fog)(2) = f(g(2)) 

= f(3 × 2+ 1) 

= f(3 × 8 + 1)

= f(25)

= 252 + 8

= 633

(gof)(1) = g(f(1)) 

= g(1+ 8) 

= g(9) 

= 3 × 9+ 1 

= 2188



Discussion

No Comment Found