Saved Bookmarks
| 1. |
Find gof and fog when f: R → R and g: R → R is defined by f(x) = x2 + 8 and g(x) = 3x3 + 1 |
|
Answer» Since, f:R → R and g:R → R fog:R → R and gof:R → R f(x)=x2 + 8 and g(x)=3x3 + 1 So, gof(x)= g(f(x)) gof(x)= g(x2 + 8) gof(x)= 3(x2 + 8)3 + 1 ⇒ gof(x)= 3(x6 + 512 + 24x4 + 192x2) + 1 ⇒ gof(x)= 3x6 + 72x4 + 576x2 + 1537 Similarly, fog(x)=f(g(x)) ⇒ fog(x)= f(3x3 + 1) ⇒ fog(x)=(3x3 + 1)2 + 8 ⇒ fog(x)=(9x6 + 1 + 6x3) + 8 ⇒ fog(x)=9x6 + 6x3 + 9 So, gof(x) = 3x6 + 72x4 + 576x2 + 1537 and fog(x) = 9x6 + 6x3 + 9 |
|