1.

Find gof and fog when f: R → R and g : R → R is defined by (i) f (x) = x and g(x) = |x| (ii) f(x) = x2 + 2x − 3 and g(x) = 3x − 4 (iii) f(x) = 8x3 and g(x) = x1/3

Answer»

(i) Given as, f: R → R and g: R → R

Therefore, gof: R → R and fog: R → R

f(x) = x and g(x) = |x|

(gof)(x) = g(f(x))

= g(x)

= |x|

Now, (fog)(x) = f(g(x))

= f(|x|)

= |x|

(ii) Given as, f: R → R and g: R → R

Therefore, gof: R → R and fog: R → R

f(x) = x2 + 2x − 3 and g(x) = 3x − 4

(gof)(x) = g(f(x))

= g(x+ 2x − 3)

= 3(x+ 2x − 3) − 4

= 3x+ 6x − 9 − 4

= 3x+ 6x − 13

Now, (fog)(x) = f(g(x))

= f(3x − 4)

= (3x − 4)+ 2(3x − 4) − 3

= 9x+ 16 − 24x + 6x – 8 − 3

= 9x− 18x + 5

(iii) Given as, f: R → R and g: R → R

Therefore, gof: R → R and fog: R → R

f(x) = 8x3 and g(x) = x1/3

(gof)(x) = g(f(x))

= g(8x3)

= (8x3)1/3

= [(2x)3]1/3

= 2x

Now, (fog)(x) = f(g(x))

= f(x1/3)

= 8(x1/3)3

= 8x



Discussion

No Comment Found