InterviewSolution
Saved Bookmarks
| 1. |
Find \(\int \frac{6 sin\sqrt{x}}{\sqrt{x}} dx\)(a) \(2 \,cos\sqrt{x}+C\)(b) –\(12 \,cos\sqrt{x}+C\)(c) -12 cosx+C(d) 12 cosx+CThis question was addressed to me at a job interview.This interesting question is from Methods of Integration-1 topic in division Integrals of Mathematics – Class 12 |
|
Answer» CORRECT answer is (B) –\(12 \,cos\sqrt{X}+C\) Easiest explanation: Let \(\sqrt{x}=t\) Differentiating w.r.t x,we get \(\frac{1}{2\sqrt{x}} dx=dt\) \(\frac{1}{\sqrt{x}} dx=2dt\) ∴\(\int \frac{6 sin\sqrt{x}}{\sqrt{x}} dx=\int \,12 \,sint \,dt\) =12(-cost)=-12 cost Replacing t with \(\sqrt{x}\), we get \(\int \frac{6 sin\sqrt{x}}{\sqrt{x}} dx=-12 \,cos\sqrt{x}+C\) |
|